Обязанности:
Mы — команда R&D-рекомендательных систем, сейчас нас 7 человек, выпускники ШАД, МФТИ и ФКН.Наша цель — смотреть за горизонт и находить алмазы, а потом их затаскивать в продукт. Мы всегда смотрим, как наши разработки можно переиспользовать и где применить, а затем масштабируем.Сейчас мы сфокусированы на использовании трансформеров для рекомендательных систем и разработке мультимодальных моделей. Двигаемся в сторону использования графовых нейронных сетей для рекомендаций. Технологии: данные храним в YTsaurus, запускаем джобы обучения через airflow или kubeflow; мониторинг обучения через MLFlow или wandb; также есть коммунальные GPU/CPU хосты. РостМы занимаемся широким спектром задач: ранжирование, контентные модели, трансформеры, графовые нейронные сети. Благодаря этому мы можем периодически меняться задачами, тем самым развивая каждого в разных областях. Мы активно принимаем участие в конференциях и готовим статьи уровня A*/A. На регулярных 1to1 мы фокусируемся на профессиональном росте и стремимся, чтобы каждый занимался тем, что ему интересно. Задачи: чтение и разбор статей. Мы находимся в постоянном поиске новых технологий и заглядываем за горизонт. Надо будет читать статьи, искать новые подходы, воспроизводить их и тестировать на наших данных; сбор и подготовка данных для обучения моделей. Надо из сырых данных пользовательского взаимодействия с контентом выгружать и формировать данные в нужном для обучения формате; разработка контентных моделей: у нас есть разные типы контента — длинные видео, короткие клипы, посты — нужно разрабатывать модели, которые будут генерировать эмбеддинги, а затем их использовать для улучшения качества рекомендаций и не только; разработка и тестирование алгоритмов рекомендаций: надо будет читать статьи, изучать SOTA подходы к рекомендательным системам, тестировать разные алгоритмы. Все тесты логировать, принимать решение о том, какие алгоритмы будем использовать. Принимать решение не только на основе метрик, но и на основе того, как это будет работать и масштабироваться в продакшне. Требования: практический опыт работы в ML; опыт построения нейросетевых моделей; уверенное знание Python; опыт оптимизации и внедрения моделей в продакшн; знание классических алгоритмов и структур данных. Будет плюсом: умение писать продакшн код; знание SQL; опыт построения рекомендательных систем; опыт чтения и воспроизведения алгоритмов из научных статей.Похожие вакансии